
Audio System Toolbox™

User’s Guide

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Audio System Toolbox™ User’s Guide
© COPYRIGHT 2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2016 Online only New for Version 1.0 (Release 2016a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Musical Instrument Digital Interface
1

Musical Instrument Digital Interface (MIDI) 1-2
About MIDI . 1-2
MIDI Control Surfaces . 1-2
Using MIDI Control Surfaces with MATLAB and Simulink . . 1-3

Use the Audio Test Bench
2

Use the Audio Test Bench . 2-2
Open Audio Test Bench . 2-2
Run Audio Test Bench . 2-3
Debug Source Code of Audio Plugin 2-3
Open Scopes . 2-5
Configure Input to Audio Test Bench 2-5
Configure Output from Audio Test Bench 2-6
Synchronize Plugin Property with MIDI Control 2-7
Play the Audio and Save the Output File 2-8

Audio Plugin Example Gallery
3

Audio Plugin Example Gallery . 3-2
Audio Plugin Examples . 3-2
Sample Audio Files . 3-13

1

Musical Instrument Digital Interface

1 Musical Instrument Digital Interface

1-2

Musical Instrument Digital Interface (MIDI)

In this section...

“About MIDI” on page 1-2
“MIDI Control Surfaces” on page 1-2
“Using MIDI Control Surfaces with MATLAB and Simulink” on page 1-3

About MIDI

The Musical Instrument Digital Interface (MIDI) was originally developed to
interconnect electronic musical instruments. This interface is very flexible and has many
uses in many applications far beyond musical instruments. Its simple unidirectional
messaging protocol supports many different kinds of messaging.

Windows, Macintosh, and Linux platforms all have native support for MIDI, so software
on any of these platforms can send and receive MIDI messages. See http://www.midi.org
for more information about MIDI.

MIDI Control Surfaces

One kind of MIDI message is the Control Change message, used to communicate changes
in controls, such as knobs, sliders, and buttons. A MIDI Control Surface is a device
with controls that sends MIDI Control Change messages when you turn a knob, move
a slider, or push a button on a MIDI control surface. This Control Change message
indicates which control changed and what its new position is. MIDI control surfaces are
quite generic because the interpretation of the Control Change message is entirely up
to the message recipient. Even though some control surfaces are tailored for particular
applications, the messages they send can be used to control anything.

Hardware MIDI control surfaces are widely available in a range of configurations and
prices. MIDI control apps can turn a smartphone or tablet into a virtual MIDI control
surface. For custom applications, MIDI control surfaces are not difficult to build using,
for example, Arduino boards.

Because the MIDI messaging protocol is unidirectional, determining a particular
control’s position requires that the receiver listen for Control Change messages that
control sends. The protocol does not support querying the control for its position.

http://www.midi.org

 Musical Instrument Digital Interface (MIDI)

1-3

The simplest MIDI control surfaces are unidirectional; they end MIDI Control Change
messages, but do not receive them. More sophisticated control surfaces are bidirectional:
They can both send and receive Control Change messages. These control surfaces have
knobs or sliders that can be operated automatically. For example, a control surface can
have sliders or knobs that are motorized. When it receives a Control Change message,
the appropriate control is moved to the position in the message. You can use this feature
to synchronize software GUI with MIDI control surface. For example, moving a slider on
the MIDI control surface sends a Control Change message to a GUI slider, which then
moves to match the control surface. Similarly, moving the GUI slider sends a Control
Change message to the MIDI control surface, which then moves to match the GUI slider.

Using MIDI Control Surfaces with MATLAB and Simulink

The Audio System Toolbox™ product enables you to use MIDI control surfaces to control
MATLAB® programs and Simulink® models by providing the capability to listen to
Control Change messages. The toolbox also provides a limited capability to send Control
Change messages to support synchronizing MIDI controls. The Audio System Toolbox
interface to MIDI control surfaces includes five functions and one block:

• midiid function
• midicontrols function
• midiread function
• midisync function
• midicallback function
• MIDI Controls block

Initial Setup

Your MIDI control surface should be connected to your computer, and turned on, before
starting MATLAB. Instructions for connecting your MIDI device to your computer vary
from device to device. See the instructions that came with your particular device. If you
start MATLAB before connecting your device, MATLAB may not recognize your device
when you connect it. To correct the problem, restart MATLAB with the device already
connected.

Next, set the MATLAB preference, specifying the name of the default MIDI device.
Use midiid to determine the name of the device, and then use setpref to set the
preference:

1 Musical Instrument Digital Interface

1-4

>> [control, device] = midiid

Move the control you wish to identify; type ^C to abort.

Waiting for control message... done

control =

 1082

device =

BCF2000

>> setpref('midi', 'DefaultDevice', device)

>>

This preference persists across MATLAB sessions, so you only have to set it once, unless
you want to change devices.

If you do not set this preference, MATLAB and the host operating system choose a device
for you. However, such autoselection can cause unpredictable results because many
computers have “virtual” (software) MIDI devices installed that you may not be aware of.
For predictable behavior, you should set the preference.

You can always override this default and explicitly specify a device name. Thus, you can
use multiple MIDI devices simultaneously.

Identifying Controls

Before you can connect a MIDI control with MATLAB or Simulink, you must know the
identifiers for that particular control:

• Control number
• Device name

The control number is a fixed integer assigned by the device manufacturer. Some devices
may change the assigned number based on various modes, or you can reprogram the
number. The device name is determined by the manufacturer and the host operating
system. You use midiid to determine both.

You do not usually have to use midiid repeatedly. If you use a single device in most
cases, then specify that device as the default hardware. You can save the control
numbers in a function, a .mat file, or whatever form you find convenient. This example
shows a function returning a struct with all the control numbers for a Behringer
BCF2000:

function ctls = BCF2000

 % BCF2000 return MIDI control number assignments

 % for Behringer BCF2000 MIDI control surface

 Musical Instrument Digital Interface (MIDI)

1-5

 ctls.knobs = 1001:1008;

 ctls.buttons = [1065:1072;1073:1080];

 ctls.sliders = 1081:1088;

end

MATLAB Interface

To use the MATLAB interface functions, first call midicontrols to specify any devices
or controls to listen to. midicontrols returns an object, which you pass to the other
functions for subsequent operations. You can now read the values of the specified MIDI
controls by calling midiread with that object. MATLAB can respond to changes in MIDI
controls by periodically calling midiread.

You can also set a callback on the specified MIDI controls by calling midicallback with
that object and a function handle. The next time the MIDI controls change value, the
function handle is invoked and passed to the object. The callback function typically calls
midiread to determine the new value of the MIDI controls. You can use this callback
when you want a MIDI control to trigger an action (such as update a GUI). Using this
approach prevents having a continuously running MATLAB program in the command
window.

Synchronization

If midiread is called before the MIDI control sends a Control Change message, the
midicontrols object has no information about the actual state of the MIDI control.
During this time, the midicontrols object and the actual MIDI control are out of sync
with each other. Thus, calling midiread returns the initial value that was specified in
the call to midicontrols (0 by default). You can synchronize the object with the control
by moving the MIDI control. The MIDI control responds by sending a Control Change
message causing the midicontrols object to sync to the MIDI control. If your MIDI
control surface is bidirectional, you can sync in the other direction by calling midisync
to send the midicontrols object’s initial value to the actual MIDI control. The MIDI
control responds by moving into sync with the midicontrols object.

It is generally harmless to call midisync even if the MIDI control surface is not
bidirectional, so it is usually good practice to call midisync immediately after calling
midicontrols.

Synchronization is also useful to link a MIDI control with a GUI control (a uicontrol
slider, for example), so that when one control is changed, the other control tracks it.
Typically, you implement such tracking by setting callback functions on both the MIDI
control (using midicallback) and the GUI control. The MIDI control callback sends its

1 Musical Instrument Digital Interface

1-6

new value to the GUI control and the GUI control sends its value to the MIDI control,
using midisync.

Simulink Interface

The MIDI Controls block provides the Simulink interface. See the block reference page
MIDI Controls for more details.

2

Use the Audio Test Bench

2 Use the Audio Test Bench

2-2

Use the Audio Test Bench

In this tutorial, you open the Audio Test Bench and explore some of its key functionality.

Open Audio Test Bench

To open an audio plugin test bench user interface (UI) for an instance of
DampedVolumeController, at the MATLAB command prompt, enter:

audioTestBench audiopluginexample.DampedVolumeController

 Use the Audio Test Bench

2-3

Run Audio Test Bench

To run the audio test bench for your plugin with default settings, click . Move the
sliders to modify the Gain (dB) and Transition Delay (s) parameters while streaming.

To stop the audio stream loop, click . The MATLAB command line and objects used by
the test bench are now released.

To reset internal states of your audio plugin and return the sliders to their initial
positions, click .

Click to run the audio test bench again.

Debug Source Code of Audio Plugin

To pause the audio test bench, click .

To open the source file of your audio plugin, click .

2 Use the Audio Test Bench

2-4

You can inspect the source code of your audio plugin, set breakpoints on it, and modify
the code. Set a breakpoint at line 69, and then click on your audio test bench.

 Use the Audio Test Bench

2-5

The audio test bench runs your plugin until it reaches the breakpoint. To reach the
breakpoint, move the Transition Delay (s) slider on your audio test bench. To quit
debugging, remove the breakpoint. In the MATLAB editor, click Quit Debugging.

Open Scopes

To open the Time Scope to visualize the time-domain input and output for your audio
plugin, click . To open the spectrum analyzer to visualize the frequency-domain input
and output, click .

Configure Input to Audio Test Bench

To release objects and stop the audio stream loop, click . The input to the audio test
bench uses the functionality of audioDeviceReader and dsp.AudioFileReader. You can
input from device or file by selecting from the Input menu. Select Audio File Reader.

2 Use the Audio Test Bench

2-6

Click to open a UI for Audio File Reader configuration.

You can enter any file name included on the MATLAB path. If you want to specify a file
that is not on that MATLAB path, specify its path completely.

In the Name of audio file from which to read box, enter: RockDrums-44p1-
stereo-11secs.mp3

Press Enter on your keyboard, and then exit the Audio File Reader configuration UI.
To run the audio test bench with your new input, click .

See audioDeviceReader and dsp.AudioFileReader for information about modifying
parameters of your audio reader.

Configure Output from Audio Test Bench

To release your output object and stop the audio stream loop, click . The output
from the audio test bench uses the functionality of audioDeviceWriter and
dsp.AudioFileWriter. Choose to output to device and file by selecting Both from the
Output menu.

 Use the Audio Test Bench

2-7

To open a UI for Audio Device Writer and Audio File Writer configuration, click

.

See audioDeviceWriter and dsp.AudioFileWriter for information about modifying
parameters of your audio reader.

Synchronize Plugin Property with MIDI Control

If you have a MIDI device connected to your computer, you can synchronize plugin
properties with MIDI controls. To open a MIDI configuration UI, click . Synchronize
the Gain and TransitionDelay properties with MIDI controls you choose. Click OK.

2 Use the Audio Test Bench

2-8

See configureMIDI for more information.

Play the Audio and Save the Output File

To run your audio plugin, click . Adjust your plugin properties in real time using your
synchronized MIDI controls and UI sliders. Your processed audio file is saved to the
current folder.

See Also
audioPlugin | Audio Test Bench | generateAudioPlugin | validateAudioPlugin

More About
• “Design an Audio Plugin”
• “Audio Plugin Example Gallery” on page 3-2
• “Export a MATLAB Plugin to a DAW”

3

Audio Plugin Example Gallery

3 Audio Plugin Example Gallery

3-2

Audio Plugin Example Gallery

Use these Audio System Toolbox plugin examples and audio files to analyze design
patterns and practice your workflow.

Audio Plugin Examples

Name: audiopluginexample.BassEnhancer

Type: System object™ plugin

Description: Implements a psychoacoustic bass enhancement algorithm. The plugin
parameters are the upper cutoff frequency of the bandpass filter and the gain applied at
the output of the bandpass filter.

Related Example: Psychoacoustic Bass Enhancement for Band-Limited Signals

Inspect Code

edit audiopluginexample.BassEnhancer

Run Plugin

 Audio Plugin Example Gallery

3-3

audioTestBench audiopluginexample.BassEnhancer

Generate Plugin

generateAudioPlugin audiopluginexample.BassEnhancer

Name: audiopluginexample.Chorus

Type: Basic plugin

Description: Adds an audio chorus effect. The chorus effect is implemented by
modulating two delay lines.

Inspect Code

edit audiopluginexample.Chorus

Run Plugin

audioTestBench audiopluginexample.Chorus

Generate Plugin

generateAudioPlugin audiopluginexample.Chorus

3 Audio Plugin Example Gallery

3-4

Name: audiopluginexample.DampedVolumeController

Type: System object plugin

Description: Damps the volume control of an audio signal. The plugin has two
parameters: the gain that is applied to the input audio signal, and the transition delay
for gain application in seconds.

Inspect Code

edit audiopluginexample.DampedVolumeController

Run Plugin

audioTestBench audiopluginexample.DampedVolumeController

Generate Plugin

generateAudioPlugin audiopluginexample.DampedVolumeController

 Audio Plugin Example Gallery

3-5

Name: audiopluginexample.Echo

Type: Basic plugin

Description: Implements an audio echo effect using two delay lines. The plugin user
tunes the delay taps in seconds, the gain of the delay taps, and the output dry/wet mix.

Inspect Code

edit audiopluginexample.Echo

Run Plugin

audioTestBench audiopluginexample.Echo

Generate Plugin

generateAudioPlugin audiopluginexample.Echo

3 Audio Plugin Example Gallery

3-6

Name: audiopluginexample.Flanger

Type: Basic plugin

Description: Implements an audio flanging effect using a modulated delay line. The
plugin uses audioOscillator to create the control signal for modulation. The plugin
user tunes the delay tap in seconds, the amplitude and frequency of the delay line
modulation, and the output dry/wet mix.

Inspect Code

edit audiopluginexample.Flanger

Run Plugin

audioTestBench audiopluginexample.Flanger

Generate Plugin

generateAudioPlugin audiopluginexample.Flanger

 Audio Plugin Example Gallery

3-7

Name: audiopluginexample.HighPassIIRFilter

Type: System object plugin

Description: Implements a second-order IIR highpass filter with tunable cutoff
frequency. The plugin uses dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.HighPassIIRFilter

Run Plugin

audioTestBench audiopluginexample.HighPassIIRFilter

Generate Plugin

generateAudioPlugin audiopluginexample.HighPassIIRFilter

3 Audio Plugin Example Gallery

3-8

Name: audiopluginexample.ParametricEqualizer

Type: System object plugin

Description: Implements a three-band parametric equalizer with tunable center
frequencies, Q factors, and gains. The plugin uses designParamEQ to obtain filter
coefficients and dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.ParametricEqualizer

Run Plugin

audioTestBench audiopluginexample.ParametricEqualizer

Generate Plugin

generateAudioPlugin audiopluginexample.ParametricEqualizer

 Audio Plugin Example Gallery

3-9

Name: audiopluginexample.ParametricEqualizerWithUDP

Type: System object plugin

Description: Extends audiopluginexample.ParametricEqualizer by adding a
UDP sender. Adding a UDP sender enables the generated VST plugin to communicate
with MATLAB. The digital audio workstation and MATLAB can then exchange
information in real time. This plugin uses UDP to send the equalizer filter coefficients
back to MATLAB for visualization purposes. You can alter this plugin to send the input
or output audio instead of, or in addition to, the filter coefficients.

Related Example: Communicating Between a DAW and MATLAB via UDP

Inspect Code

edit audiopluginexample.ParametricEqualizerWithUDP

Run Plugin

audioTestBench audiopluginexample.ParametricEqualizerWithUDP

Generate Plugin

generateAudioPlugin audiopluginexample.ParametricEqualizerWithUDP

3 Audio Plugin Example Gallery

3-10

Name: audiopluginexample.PitchShifter

Type: System object plugin

Description: Implements a pitch-shifting algorithm using cross-fading between two
channels with time-varying delays and gains.

Related Example: Delay-based Pitch Shifter

Inspect Code

edit audiopluginexample.PitchShifter

Run Plugin

audioTestBench audiopluginexample.PitchShifter

Generate Plugin

generateAudioPlugin audiopluginexample.PitchShifter

 Audio Plugin Example Gallery

3-11

Name: audiopluginexample.ShelvingEqualizer

Type: System object plugin

Description: Implements a shelving equalizer with tunable cutoffs, gains, and slopes.
The plugin uses designShelvingEQ to obtain filter coefficients and dsp.BiquadFilter to
implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.ShelvingEqualizer

Run Plugin

audioTestBench audiopluginexample.ShelvingEqualizer

Generate Plugin

generateAudioPlugin audiopluginexample.ShelvingEqualizer

3 Audio Plugin Example Gallery

3-12

Name: audiopluginexample.VarSlopeBandpassFilter

Type: System object plugin

Description: Implements a variable slope IIR bandpass filter with tunable cutoff
frequencies and slopes. The plugin uses designVarSlopeFilter to obtain filter
coefficients and dsp.BiquadFilter to implement filtering.

Related Example: Tunable Filtering and Visualization Using Audio Plug-Ins

Inspect Code

edit audiopluginexample.VarSlopeBandpassFilter

Run Plugin

audioTestBench audiopluginexample.VarSlopeBandpassFilter

Generate Plugin

generateAudioPlugin audiopluginexample.VarSlopeBandpassFilter

 Audio Plugin Example Gallery

3-13

Sample Audio Files

File Name Audio Information

Ambiance-16-44p1-mono-12secs.wav

Description: Footfalls in a noisy office
hallway

NumChannels: 1

SampleRate: 44,100 Hz

Duration: 12.2369 seconds

BitsPerSample: 16
AudioArray-16-16-4channels-20secs.wav

Description: Moving noise source

NumChannels: 4

SampleRate: 16,000 Hz

Duration: 20.0320 seconds

BitsPerSample: 16
Counting-16-44p1-mono-15secs.wav

Description: Male voice counts to 10

NumChannels: 1

SampleRate: 44,100 Hz

Duration: 15.5341 seconds

BitsPerSample: 16
Engine-16-44p1-stereo-20sec.wav

Description: Running motor engine

NumChannels: 2

SampleRate: 44,100 Hz

Duration: 20.0156 seconds

BitsPerSample: 16
FunkyDrums-44p1-stereo-25secs.mp3

Description: Funky synthetic drum beat

NumChannels: 2

SampleRate: 44,100 Hz

Duration: 25.3127 seconds

BitRate: 320
FunkyDrums-48-stereo-25secs.mp3 NumChannels: 1

3 Audio Plugin Example Gallery

3-14

File Name Audio Information

Description: Funky synthetic drum beat SampleRate: 48,000 Hz

Duration: 25.3127 seconds

BitRate: 320
JetAirplane-16-11p025-

mono-16secs.wav

Description: Jet airplane

NumChannels: 1

SampleRate: 11,025 Hz

Duration: 16.3468 seconds

BitsPerSample: 16
MainStreetOne-24-96-

stereo-63secs.wav

Description: Ambient sounds of a busy
street (bird chirps, cars, mumbling)

NumChannels: 2

SampleRate: 96,000 Hz

Duration: 63.2967 seconds

BitsPerSample: 24
RandomOscThree-24-96-

stereo-13secs.aif

Description: Synthetic percussive tone
scale

NumChannels: 2

SampleRate: 96,000 Hz

Duration: 13.1868 seconds

BitsPerSample: 24
RockDrums-44p1-stereo-11secs.mp3

Description: Rock drums

NumChannels: 2

SampleRate: 44,100 Hz

Duration: 11.4678 seconds

BitRate: 320

 Audio Plugin Example Gallery

3-15

File Name Audio Information

RockDrums-48-stereo-11secs.mp3

Description: Rock drums

NumChannels: 2

SampleRate: 48,000 Hz

Duration: 11.4678 seconds

BitRate: 320
RockGuitar-16-44p1-

stereo-72secs.wav

Description: Rock guitar with distortion

NumChannels: 2

SampleRate: 44,100 Hz

Duration: 72.4695 seconds

BitsPerSample: 16
RockGuitar-16-96-

stereo-72secs.flac

Description: Rock guitar with distortion

NumChannels: 2

SampleRate: 96,000 Hz

Duration: 72.500 seconds

BitsPerSample: 16
SoftGuitar-44p1_mono-10mins.ogg

Description: Solo acoustic folk guitar

NumChannels: 1

SampleRate: 44,100 Hz

Duration: 596.3719 seconds
SpeechDFT-16-8-mono-5secs.wav

Description: Male voice speaking

NumChannels: 1

SampleRate: 8,000 Hz

Duration: 4.9902 seconds

BitsPerSample: 16

3 Audio Plugin Example Gallery

3-16

File Name Audio Information

TrainWhistle-16-44p1-

mono-9secs.wav

Description: Train whistle

NumChannels: 1

SampleRate: 44,100 Hz

Duration: 9.3344 seconds

BitsPerSample: 16
Turbine-16-44p1-mono-22secs.wav

Description: Turbine

NumChannels: 1

SampleRate: 44,100 Hz

Duration: 22.4305 seconds

BitsPerSample: 16
WashingMachine-16-44p1-

stereo-10secs.wav

Description: Washing machine

NumChannels: 2

SampleRate: 44,100 Hz

Duration: 18.0651 seconds

BitsPerSample: 16
WaveGuideLoopOne-24-96-

stereo-10secs.aif

Description: Synthetic percussive tone

NumChannels: 2

SampleRate: 96,000 Hz

Duration: 10.5495 seconds

BitsPerSample: 24
guitar10min.ogg

Description: Solo acoustic folk guitar

NumChannels: 2

SampleRate: 44,100 Hz

Duration: 595.2392 seconds
handel.ogg

Description: Hallelujah chorus

NumChannels: 1

SampleRate: 44,100 Hz

Duration: 8.9249 seconds

 Audio Plugin Example Gallery

3-17

File Name Audio Information

audio48kHz.wav

Description: Rock with vocals, drums, and
guitar

NumChannels: 1

SampleRate: 48,000 Hz

Duration: 8.9634 seconds

BitsPerSample: 16
dspafsx_mono.wav

Description: Electric guitar solo

NumChannels: 1

SampleRate: 16,000 Hz

Duration: 3.7500 seconds

BitsPerSample: 8
dspafxf.wav

Description: Drum beat with trap and
bass

NumChannels: 1

SampleRate: 22,050 Hz

Duration: 3.9343 seconds

BitsPerSample: 16
speech_dft_8kHz.wav

Description: Male voice speaking

NumChannels: 1

SampleRate: 8000 Hz

Duration: 4.9902 seconds

BitsPerSample: 16
Swept_int.wav

Description: Tone sweep

NumChannels: 1

SampleRate: 96,000 Hz

Duration: 8 seconds

BitsPerSample: 32

3 Audio Plugin Example Gallery

3-18

File Name Audio Information

speech_dft.mp3

Description: Male voice speaking

NumChannels: 1

SampleRate: 22,500 Hz

Duration: 5.1199 seconds

BitRate: 64

See Also
| | Audio Test Bench | audioPluginInterface | audioPluginParameter

More About
• “Use the Audio Test Bench” on page 2-2

